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Verifying high-resolution forecasts is challenging because forecasts can be considered good by
their end-users even when there is no pixel-to-pixel correspondence between the forecast and
the verification fields. Many of the verification methods that have been proposed to address
the verification of high-resolution forecasts are based on filtering, warping or searching within
a neighborhood of pixels in the forecast and/or the verification fields in order to retain the ca-
pability to use a simple metric. This is because it is necessary for a verification score to be a
metric to allow comparisons of forecasts. In this paper, we devise a computationally simple
scalar spatial verification metric that is capable of ordering forecasts without preprocessing
the fields. The metric is based on the insight that in the verification problem, the observation
field can be considered a reference field that forecast fields are ordered against. This new met-
ric is demonstrated on synthetic and real model forecasts of precipitation.

© 2011 Elsevier B.V. All rights reserved.
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1. Introduction

The verification of high-resolution forecasts differs from the
verification of high-resolution nowcasts because forecasts tend
to have significant position errors. At the time scale of most
nowcasts, position errors are only on the order of a few pixels,
leading to considerable pixel overlap with the verification
field. On the other hand, position errors in forecasts can be so
high that there is no overlap at all between the forecast and ob-
servation fields. Therefore, it is necessary to reward a forecast
for an “almost-correct” position i.e. to carry out the evaluation
beyond simple pixel-to-pixel correspondence. In the absence
of such a reward, the verification method will suffer from a
“double-penalty” problem (Gilleland et al., 2009; Ahijevych et
al., 2009). For example, if the Root Mean Square Error (RMSE)
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Institute of Mesoscale
s.
an@ou.edu

ll rights reserved.

al., Spatial verification
is computed by differencing the corresponding pixels of the
model forecast and the verifying field and then computing the
average of the squared differences, the RMSE will show the im-
pact of a double penalty because there are two areas of large dif-
ferences even though the underlying problem is simply a
position shift (See Fig. 1a).

Several verification techniques have been introduced to ad-
dress this problem of comparing forecasts with observations
when there are significant displacement errors in the forecast.1

Neighborhood approaches change the way that the error is
computed: instead of computing errors by directly differencing
the two fields, a neighborhood around each grid-point is
searched in both the fields and the statistical properties of the
set of pixels in the neighborhoods such as fractional coverage
andmean value are compared (Ebert, 2009). Pixel-to-pixel cor-
respondence requirements can be avoided by comparing prop-
erties of the pixels in the entire domain of interest, aswas done
1 The methods handle displacement errors, but the grids themselves have
to be mapped to the same projection and resolution before any verification
is carried out.
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Fig. 1. Schematic plots of observation and forecast fields of different scenarios referenced in the text. In all cases, solid lines represent the observation field while
the dashed line represents the forecast valid for the time of the observation. (a) A position error leads to double penalty if using RMSE. (b) Euclidean metric function,
between points and between a point and a set. (c) The Euclidean distance (d) between two sets is not symmetric. (d) distDV=0 i.e. it does not penalize overforecasts.
(e,f) distOV is the same but the distDV is larger in the case of (e).

2 Our distance measure is bounded by the size of the grid, but not bounded
in the sense that a Probability of Detection is bounded between 0 and 1.
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by Wernli et al. (2009). Filtering-based methods (e.g. Casati
and Wilson, 2007) decompose the fields into images of differ-
ent resolutions and compute pixel-to-pixel scores on them.
The resolution at which double penalty errors start to show
up is an indirect measure of the position error although the er-
rors may well not be due to location. Non-parametric optical
flow and warp approaches have been employed (Alexander
et al., 1999; Keil and Craig, 2009) tomodify one of the fields be-
fore computing a pixel-to-pixel difference. The amount of
warping that is required is an indirect measure of the position
error. Davis et al. (2006); Marzban and Sandgathe (2006) de-
scribe cluster-based approaches where each field is segmented
into objects and objects in the fields compared for position and
size errors. Lakshmanan and Kain (2010) introduced Gaussian
Mixture Models as a way to fit images into parametric models
and then compared the parameters of these models on the
two images to extract position, amplitude and rotation errors.

One way to categorize these methods, different from the
four-category classification proposed by Gilleland et al.
(2009), is to consider their intent. The neighborhood, filter-
ing and warp methods all intend to modify the image or the
range of pixels so that pixel-to-pixel (or super-pixels to
super-pixels) error measurements work. The object-oriented
and parametric fit approaches take the approach of avoiding
the problematic pixel-to-pixel comparisons by instead com-
paring groups of pixels or parametric fits to those pixels.

Suchmethods ofwindowing,warping or filtering images be-
fore comparing them yield rich multi-aspect measures of the
goodness of a forecast. For example, the Gaussian Mixture
Model approach decomposes the difference between the obser-
vation field and amodel forecast into position, rotation and am-
plitude errors. The wavelet and neighborhood approaches
provide an indication of what scale the forecast performs best.
Please cite this article as: Zhu, M., et al., Spatial verification
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The object-based approaches provide a variety of evaluation
measurements for each object in the observation and forecast
fields.

In spite of the richness of the verification measures intro-
duced in the literature, it has been our experience that end-
users gravitate toward simple and intuitive scalar measures of
performance. Our goal, then, is to devise an intuitive scalarmea-
sure of model performance that can be computed without ex-
tensive preprocessing of model forecast fields. A distance
metric is certainly intuitive — the “farther” away a forecast is
from the observation field, the worse it is. It is also a scalar and
has the benefit of naturally encompassing position errors in
model forecasts. Our goal in this paper is to devise a distance
metric that can be used to gauge how close a forecast is to the
observation. It should be noted that the metric introduced in
this paper is a distance, not a skill score. Unlike a skill score,
the distance is not bounded2 — the larger the distance, the
worse the forecast.

1.1. Need for a metric

It is worth stepping back a little and asking why so many
verification techniques warp, filter or window (search in the
neighborhood of pixels) images before computing error mea-
surements. We suggest that one key reason is that it is very
important for the final location error measurement to be a
metric if a suitable one can be found.

A function m(A,B) is a metric if it is symmetric (m(A,B)=
m(B,A)), positive (m(A,B)≥0; m(A,b)=0 if and only if A=B)
and satisfies the triangle inequality (m(A,B)+m(B,C)≥m(A,C)).
using a true metric, Atmos. Res. (2011), doi:10.1016/
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It is important that verification measurements are metrics
because in the absence of it being a metric, we may obtain
unreasonable results when comparing two forecasts. The
positivity property notes specifically that the distance be-
tween two objects is zero is equivalent to the fact that these
two objects are identical. This is important because in a per-
fect forecast, the sets of pixels corresponding to the observa-
tion and forecast fields will be identical and it is necessary to
recognize a perfect forecast.

The triangle inequality property is essential to carry out a
fair measurement. Think about this scenario: Let O be the ob-
servation, F1 and F2 be two forecasts. If we measured that the
distance between O and F1 is 100 units, and the distance be-
tween O and F2 is 10 units, we would say that F2 is a better
forecast. However, if the verification measurement does not
satisfy the triangle inequality property, we may find that
the distance between F1 and F2 is, say, 0.5 units or even less.
Considering the expected variance in computed distances,
we may not be convinced that F2 is really better since it is
almost the same as F1 (the distance between them is almost
zero).

The symmetric property guarantees that every set has
equal right to be fairly measured: the distance from set A to
set B is always the same as the distance from set B to set A.

Given that it is important that verification measurements
be metrics, how hard is that to realize in practice? Are not all
intuitive measurements metrics?

1.2. A metric between two sets

Although the definition of a metric seems intuitive, many
reasonable measurements turn out to not be metrics espe-
cially when considering the model verification problem.
This is because it is non-trivial to define a distance between
two sets of points that is a metric. It is easy to define a metric
between a point and a set of points, but not so easy to define
a metric between two sets.

Take, for example, the most intuitive measurement of all.
Suppose we were to use the Euclidean metric as our distance
function. For two points x ¼ x1; x2ð Þ; a ¼ a1; a2ð Þ∈R2, the Eu-
clidean metric function is:

mxa ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1−a1ð Þ2 þ x2−a2ð Þ2

q
: ð1Þ

This is shown in Fig. 1b. Given the Euclidean metric be-
tween two points, we can define another metric, this time be-
tween any point x∈R2 and a set A⊂R2 as:

mxA ¼ min
a∈A

mxa ð2Þ
i.e. as the distance between the point x and the closest point
to it in the set A (See Fig. 1b).

It can easily be noted that metricmxA is overly sensitive. It
is defined exclusively by the closest point and can therefore
be unduly affected by noise in the data. Consider the scenario
in Fig. 1c where the forecast field has a single non-zero pixel
close to the observations. Because this pixel is closest to the
observations, all the mxA will be evaluated on the basis of
this one point, leading to mxA being much smaller for all x
in X than for the scenario in Fig. 1b. Yet, the forecast is not
that much better. Thus, even intuitively appealing metrics
Please cite this article as: Zhu, M., et al., Spatial verification
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such as the Euclidean metric turn out to be problematic for
verification.

The difficulty in devising a metric does not stop there. Our
definition of mxA is a metric function between a point and a
set. We have yet to define a metric function between two
sets X and A — this is what would be needed to find the dis-
tance between the pixels of the forecast and observed images.
One possibility is to define it as the intuitively appealing maxi-
mum of all possiblemxA:

d X;Að Þ : ¼ max
x∈X

mxA: ð3Þ

But this Euclidean distance between two sets turns out to
not even be a metric function as it is not symmetric. In other
words, d(X,A) can be different from d(A,X) (See Fig. 1c for an
illustration). Using the minimum of all possible mxA does not
work either because it does not satisfy the positivity property.
The sets A and X need to only overlap, not be identical, for the
distance to be zero.

The traditional solution to this problem is to enforce sym-
metry using the Hausdorff metric defined as (Rucklide,
1996):

mH A;Bð Þ ¼ max d A;Bð Þ; d B;Að Þf g: ð4Þ

It is interesting to observe that when B includes only one
point x, the distance from x to set A is different from the
Hausdorff distance between x and set A: the former measures
the point x to the closest point to it in set A, the latter mea-
sures x to the farthest point to it in set A. The maximum oper-
ation in the Hausdorff metric makes it very susceptible to
noise. One possible way to address this, called the Partial
Hausdorff Distance (PHD), is to use, say the 75th percentile,
rather than the maximum. However, this is not a metric
(Rucklide, 1996), so methods such as those of Venugopal et
al. (2005) that are based on the PHD are also unlikely to be
true metrics. Baddeley (1992) replaced the maximum in the
definition of the Hausdorff metric with an Lp norm and this
was employed for model forecast verification by Gilleland
et al. (2008). Similar to the Hausdorff metric, such a metric
may suffice when the objective is to compare objects that
consist of contiguous sets of pixels i.e. if there will not be
noisy pixels elsewhere in the image that have to be consid-
ered part of the distance computation. If these Hausdorff
typemetrics are not preceded by a step of object identification
or noise removal, they are always sensitive to noise. This is
because the Euclidean metric function mx,A that Hausdorff
type metrics are built on is itself problematic for spatial field
verification, as opposed to verifying objects extracted from
those fields.

2. Verification metric

In this paper, we introduce an easily computable metric
that has been devised specifically for the model verification
problem. Rather than consider a generic pair of binary im-
ages, we recognize that, in model verification, there is an ob-
servation field which is quite special and a set of forecast
fields each of which has to be evaluated. Our metric will use
the observation field as a reference field so as to come up
with a measure that is (a) a true metric, and so can be used
using a true metric, Atmos. Res. (2011), doi:10.1016/
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to rank forecasts, (b) evaluatable between two sets and does
not require pixel-to-pixel correspondence.

The metric can be computed directly from the images. It is
not necessary to filter, warp, window, identify objects or fit
parameters to the images. It should be noted, though, that our
metric is defined on sets of pixels and, so, it requires a threshold
to be specified by the end-user. Pixels with a data value greater
than the threshold will be considered part of the set and those
with a data value less than the threshold will be considered
outside the set, thus images are converted into binary images
first. Whenwe show the results of our technique, wewill dem-
onstrate the results on a variety of thresholds.

Let O be the set consisting of pixels in the observation field
that are above a user-specified threshold. Let A, B, C be sets con-
sisting of pixels in forecast fields. The verification metric that
we propose is as follows.

2.1. Definition (verification metric)

The verification metric between two sets A and B is given
by

metrV A;Bð Þ : ¼ λ1distOV A;Bð Þ þ λ2distDV A;Bð Þ ð5Þ

i.e. a weighted sum of two distances that are defined below.
The overlap-based distance distOV is given by:

distOV A;Bð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
∀i

∑
∀j

aij−bij
� �2

s
; ð6Þ

where aij bij are characteristic functions of sets A, B, respec-
tively. i.e. aij is 1 if the pixel i, j is in the set A, aij is 0 if the
pixel i, j is not in the set A. bij is defined similarly. Recall that
the pixel i, j is in the set A if its value is above a user-specified
threshold. Thus, this is simply the root mean square error
computed on the binary field.

Next, we introduce the observation distance. The observa-
tion distance distob is the average distance of every observa-
tion point to a forecast field:

distob O;Að Þ ¼

1
N Oð Þ∑

N Oð Þ
i¼1 moA oi;Að Þ if N Oð Þ·N Að Þ≠ 0

0 if N Oð Þ ¼ 0 and N Að Þ ¼ 0;

D otherwise;

8>>>>><
>>>>>:

ð7Þ

wheremoA is the Euclidean metric function of Eq. 2, oi are the
pixels in the observation field, N(O),N(A) are the number of
pixels in the sets O and A, respectively, i.e. the number of
pixels in the corresponding images that are above the thresh-
old. The number D in the definition of distob is a number larg-
er than the maximum possible distance. One possible choice
is the length of the diagonal of the grids being compared.
This upper limit value of distob will be reached if the observa-
tion field or the forecast field is an empty set.

The above distance is used to compute the observation-
based displacement distDV between the sets A and B as:

distDV A;Bð Þ ¼ jdistob O;Að Þ−distob O;Bð Þj: ð8Þ
Please cite this article as: Zhu, M., et al., Spatial verification
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The relative weights of the two component distances (of
Eqs. 6 and 8) in the verification metric are quite subjective.
We use λ1 ¼ λ2 ¼ 1

2 throughout this paper for simplicity.
Users could choose different weights depending on whether
overlap error is more or less important than displacement.
This depends on the purpose of the forecast and is very
much a subjective decision to be made by the user.

As defined, the units of the measurement are in pixels. It
can be converted into a true distance (in, for example, km)
by multiplying by the appropriate pixel dimensions.

2.2. Simplified form (verification metric)

Since this metric will mainly be used for verification, what
is of interest is metrV(O,A) in which case, one of the terms in
distDV drops away (since distob(O,O)=0), leaving:

metrV O;Að Þ : ¼ λ1distOV O;Að Þ þ λ2distob O;Að Þ: ð9Þ

Other than to prove the triangle inequality, when we will
need the more general form, this simplified definition with
λ1 ¼ λ2 ¼ 1

2 is what we will term the verification metric.

2.2.1. Explanation of the verification metric
Note the special role that the observation field, O, plays in

distDV (See Eq. 8). The distance between any two fields A and
B is computed as the sum of the distances between each of
those fields and O. In other words, the observation field is
the reference field against which forecasts are compared as
far as their displacement is compared. The overlap between
forecasts, on the other hand, is compared directly from the
two fields (See Eq. 6). Of course, if we are comparing a fore-
cast field to an observation field, one of the terms in distDV
is zero and both comparisons take place on an image-to-
image level.

Further distDV does not penalize overforecasts. For exam-
ple, consider the scenario in Fig. 1d. For every point in the ob-
servation, there is a point in the forecast field that exactly
matches. Therefore, distob is zero, leading to a zero distDV.
Thus, one way of thinking about the overlap term distOV is
as the penalty for overforecasts. On the other hand, distOV is
based on strict pixel-to-pixel correspondence and is, there-
fore, insensitive to position errors — the scenarios in Fig. 1e
and f have the same distOV but the distDV of Fig. 1f is larger,
leading to a larger value in the verification metric. In this
view, distDV provides the position-error sensitivity to the ver-
ification metric. It is also apparent that distOV is subject to
double-penalty issues but this is not a serious problem be-
cause the verification metric as a whole is sensitive to posi-
tion errors.

It should be noted that the verification metric is a distance
and not a bounded skill score. The larger the images being
compared, the larger the maximum distance can be. The im-
ages being compared should, however, be of the same size
and resolution. In practice, this can be achieved by cropping
or subsampling the larger or more detailed image to meet
the dimensions and resolution of the smaller, coarser image.

It should also be noted that the metric is extremely sensi-
tive to the observation field, because distances are defined by
using the observation as the reference field. This is because
the verification metric is designed to compare two forecasts
using a true metric, Atmos. Res. (2011), doi:10.1016/
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Table 1
Verification metric on fake geometric images from Ahijevych et al. (2009)
The position of the fake image in Fig. 2 is indicated in this table.

Data set Description metrV

geom000 (top left) Original 0
geom001 (top right) 50 pts. right 46
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given the same observation. The verification metric should
not be used to compare two forecasts at two different
times — a forecast 100 km displaced from the observation
might be acceptable when there are only a few observations,
but may not be acceptable when the entire domain is full of
observations.
geom002 (2nd row left) 200 pts. right 120
geom003 (2nd row right) 125 pts. right, too big 98
geom004 (3rd row left) 125 pts. right, rotated 84
geom005 (3rd row right) 125 pts. right, huge 112
3. Experiments

We computed the verification metric on a fake geometric
and on a perturbed dataset from a verification method inter-
comparison project (Gilleland et al., 2009; Ahijevych et al.,
2009) that was established to improve the understanding of
the characteristics of various spatial forecast verification
methods. To enable reasonable inter-comparison, the verifi-
cation methods were carried out on synthetic and real fields
with known errors. The methods were also applied to real
model forecasts from an experiment conducted by Kain et
al. (2008). The results of the verification metric on the
Fig. 2. Verification metric (in pixels) for the fake geometric cases from Ah

Please cite this article as: Zhu, M., et al., Spatial verification
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different datasets that were created by the intercomparison
project are presented below.

3.1. Geometric cases

The “geometric” cases (also from the Intercomparison
Project Ahijevych et al., 2009) were defined on a 601×501
grid and were mapped to a 601×501 subsection of the
NCEP storage grid 240. The geometric cases illustrate three
ijevych et al. (2009). See Table 1 for details on the transformations.

using a true metric, Atmos. Res. (2011), doi:10.1016/
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types of error: 1) displacement, 2) frequency, and 3) aspect
ratio. The results of the verification are shown in Fig. 2. The
description of the results are given in Table 1.

Because the verification metric is defined on binary im-
ages, the fields were thresholded at zero i.e. pixels with a
value above zero were assumed to be part of the object and
pixels in the “white” background were assumed to be outside
it. In particular, this means that even though the objects have
two intensity levels, they are treated as a single intensity
level.
Fig. 3. Verification metric for perturbed images from Ahijevych et al. (200

Please cite this article as: Zhu, M., et al., Spatial verification
j.atmosres.2011.09.004
It might be helpful to delineate the steps to compute the
verification metric on geom001 (see Fig. 2). First, the obser-
vation field (geom000) and forecast field (geom001) are
both thresholded at zero. Thus, there are two binary images.
The first image consists of pixels whose value is 1 within
the ellipse of geom000 and 0 outside. The second image is
similar, except that the ellipse corresponds to the points in
geom001. From these two binary images, the verification
metric needs to be computed using Eq. 9. The second step,
then, is to compute distOV, defined in Eq. 6. aij is 1 within
9) thresholded at 0 mm. Details on the perturbations are in Table 2.

using a true metric, Atmos. Res. (2011), doi:10.1016/
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the first ellipse while bij is 1 within the second ellipse. If the
ellipses had overlapped, the difference aij−bij would have
been zero at points of overlap. Here, however, the ellipses
do not overlap. Thus, the difference has a magnitude of 1
where either aij or bij is 1. Therefore, distOV is equal to the
square root of twice the size of the ellipse measured in pixels.
The third step is to compute distob using Eq. 7. Both the obser-
vation and the forecast have some valid points, so the answer
is not simply the length of the diagonal of the grids being
compared. Instead, the Euclidean distance from every obser-
vation point to the closest point in the forecast field needs to
be computed. For every point within the ellipse in geom000,
we need to find the closest point in geom001. It should be
noted that we will find the closest point, not the correspond-
ing point. Because geom001 consists of the ellipse displaced
right, the closest points will all consist of points on the left-
most boundary of the ellipse in geom001. For the points on
the left boundary of the ellipse in geom000, moA will be 50,
the known displacement. For points inside the ellipse and
on the right boundary of the ellipse in geom000, this distance
will be less, as it is always the distance to the left The average
of these distances over all the points in the ellipse of
geom000 is distob. The final step is to average distOV and distob.
This is the verification score for geom001.

3.2. Perturbed cases

The “perturbed” set of cases from the Intercomparison
Project (Ahijevych et al., 2009) consists of observed data
from the 2005 NSSL/SPC Spring Experiment described in
Kain et al. (2008). The observed data were subjected to vari-
ous transformations such as shifting the entire image by a
known number of pixels or multiplying the pixel value by a
known amount. The results of the verification are shown in
Fig. 3. The results of verification at two different thresholds
are shown in Table 2.

3.3. May 14 and 19, 2005

We also analyzed observed data and model runs from the
2005 NSSL/SPC Spring Experiment described in Kain et al.
(2008) and used for intercomparisons by Gilleland et al.
(2009). The observed data from May 14, 2005 were com-
pared with 24 hour forecasts of 1 hour rainfall accumulation
carried out on May 13, 2005. We repeated the experiment
with observations from May 19, 2005 and model forecasts
from May 18, 2005.
Table 2
Verification metric on perturbed images from Ahijevych et al. (2009) when consider
Fig. 3 is indicated in this table.

Data set Description

fake000 (top left) Original
fake001 (top right) 3 pts. right
fake002 (2nd row left) 6 pts. right
fake003 (2nd row right) 12 pts. right
fake004 (3rd row left) 24 pts. right
fake005 (3rd row right) 48 pts. right
fake006 (bottom left) 12 pts. right, 10 pts down
fake007 (bottom right) 12 pts. right, 20 pts down, minus 2

Please cite this article as: Zhu, M., et al., Spatial verification
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The observations and model forecasts (from the CAPS,
NCAR and NCEP models) are shown in Figs. 4 and 5. The im-
ages cover the lower 48 states of the United States. The NCEP
model forecast was produced at the National Centers for En-
vironmental Prediction (NCEP) using a Weather Research
and Forecasting (WRF) model whose core was a Nonhydro-
static Mesoscale Model (Janjic et al., 2005) with a 4.5 km
grid spacing and 35 vertical levels. The NCAR model forecast
was produced at the National Center for Atmospheric Re-
search using the Advanced Research WRF (ARW; Skamarock
et al., 2005) core with a 4 km grid spacing and 35 vertical
levels. The CAPS was produced at the Center for Analysis
and Prediction of Storms at the University of Oklahoma
(also using the ARW core) with a 2 km grid spacing and 51
vertical levels. All three forecast systems used initial and lat-
eral boundary conditions from the North American Mesocale
Model (Rogers et al., 2009). The observations are from the
Stage II rainfall accumulation dataset produced by NCEP
(Baldwin and Mitchell, 1998).

Since the verification metric depends on the threshold
used to evaluate the image, we show the impact of threshold-
ing the image by illustrating the images at two thresholds.
How the verification metric varies as the threshold is varied
is shown in Fig. 6.

4. Discussion

It should be pointed out that the verification metric intro-
duced in this paper emphasizes the location error at the ex-
pense of fine structures in the forecast since the initial step,
of converting the fields to binary by applying a threshold,
treats all pixels above the threshold identically regardless of
how much above the threshold the pixel's value is. It is possi-
ble to use a graph such as that in Fig. 6 to derive the variation
of the metric by threshold and compute a scalar metric such
as the area under the curve to obtain a simple scalar metric
that takes into account all the pixel values. For simplicity of
analysis, however, we concentrate on a single threshold in
the cases that follow.

4.1. Geometric cases

In the case of the fake geometric images, the verifica-
tion metric penalizes the highly displaced forecast
geom002 the most and the overforecast of geom005 near-
ly as much, demonstrating the impact of distDV and distOV
respectively. As would be expected, the forecast exhibiting
a small displacement (geom001) is declared the best and
ed at thresholds of 0 mm and 20 mm. The position of the perturbed image in

metrV, 0 mm metrV,20 mm

0 0
80.0 18.5
91.8 20.9

103.6 24.7
116.6 33.7
131.7 53.8
103.6 29.6

mm 103.3 24.3

using a true metric, Atmos. Res. (2011), doi:10.1016/
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Fig. 4. Verification metric for 24 hour precipitation forecasts valid for May 14, 2005 against the observations on that day. Fields are shown thresholded at 0 mm
(top two rows) and 20 mm (bottom two rows).
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the value of metrV (46 pixels) is close to the known dis-
placement of 50 pixels. The overforecast in geom003 and
rotation in geom004 receive intermediate scores. It should
be noted that metrV lies in the range of 0,D and so there is
no way to specify the threshold beyond which a forecast
is bad. A forecast that exhibits a 50-pixel displacement
Please cite this article as: Zhu, M., et al., Spatial verification
j.atmosres.2011.09.004
may be considered bad for some applications, tolerable
for others and very useful in some cases.

Comparing these results with that of Keil and Craig
(2009) and Davis et al. (2006), we suggest that our ranking
(01, 04, 03, 05, 02) is more pleasing than that of either Keil
and Craig (2009) (01, 02, 05, 04, 03) or of Davis et al.
using a true metric, Atmos. Res. (2011), doi:10.1016/
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Fig. 5. Verification metric for 24 hour precipitation forecasts valid for May 19, 2005 against the observations on that day. Fields are shown thresholded at 0 mm
(top two rows) and 20 mm (bottom two rows).
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(2006) (04, 03, 05, 02, 01). Note that our ranking places the
slightly displaced figure in geom001 highest whereas the
method of Davis et al. (2006) favors the much larger over-
forecast in geom004 because it happens to overlap slightly
Please cite this article as: Zhu, M., et al., Spatial verification
j.atmosres.2011.09.004
with the observation. On the other hand, both our method
and the method of Keil and Craig (2009) pick geom001 as
the best, but differ on the second-place entry. Our method
picks rotated forecast of geom004 because it is shifted the
using a true metric, Atmos. Res. (2011), doi:10.1016/

http://dx.doi.org/10.1016/j.atmosres.2011.09.004
http://dx.doi.org/10.1016/j.atmosres.2011.09.004


Fig. 6. Top: verification metric (in pixels) by threshold for the perturbed cases from Ahijevych et al. (2009). See Table 2 for details on the perturbations. Bottom:
verification metric (in pixels) by threshold for various model forecasts valid for May 14, 2005.

10 M. Zhu et al. / Atmospheric Research xxx (2011) xxx–xxx
least (125 points) whereas Keil and Craig (2009) pick the
highly displaced forecast in geom002 because it happens
to have a similar size to the observed phenomenon.

4.2. Perturbed cases

In the case of the perturbed images, the relative ranking of
forecasts 2 to 6 is mostly independent of the threshold (see
Fig. 6 and Table 2). A lower value of the verification metric in-
dicates a better forecast since it indicates that the forecast is
Please cite this article as: Zhu, M., et al., Spatial verification
j.atmosres.2011.09.004
less distant from the observation. The verification metric
shows that the order of the forecasts is, from best to worst:
fake001 (3 points right), fake002 (6 points right), fake003
(12 points right), fake006 (12 points right and 10 points
down), fake004 (24 points right) and fake005 (48 points
right). Comparing with the displacement of the images, this
is quite reasonable. The only forecast that varies in relative
ranking is fake007 which has both a position error and a re-
duction in pixel magnitude. The better ranking of fake007
than fake006 indicates the reduction in pixel magnitude
using a true metric, Atmos. Res. (2011), doi:10.1016/
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happens to match up with the structures of forecast, even
though the displacement of fake007 before the reduction of
intensity is larger than that of fake006.

4.3. May 14 and 19, 2005

In the case of the real forecasts valid for May 14, 2005, the
relative ranking of the three forecasts falls into three broad
intervals (see bottom panel of Fig. 6). Below a threshold of
25 mm, all three forecasts have very similar performance
but the NCEP forecast is worse than the CAPS and NCAR
ones. Between 25 mm and 100 mm, the CAPS forecast is bet-
ter than the other two. Beyond 125 mm, the NCAR forecast is
best. Based on this, we can determine that all three forecasts
have similar performance in predicting the gross structure of
precipitation, that the CAPS model is better at predicting
moderate rainfall on that day and that the NCAR forecast is
better at predicting extreme rainfall.

The number of forecast points becomes zero beyond some
threshold and results in the displacement measure becoming
the arbitrary value D. This explains the saturation in the value
of the verification metric beyond a certain threshold. The fact
that there is a jump to this saturation value indicates that
using the length of the diagonal of the grids might not be
the best choice of a value for D.

4.4. Fast computation

The verification metric requires the computation of Euclid-
ean distances between every pair of points in the observation
and model forecast fields. It is necessary to employ distance
transforms in order to compute distances in a computationally
efficient manner. Readers wishing to implement the verifica-
tionmetric and requiring computational efficiency are directed
to a survey of exact Euclidean distance transforms by Fabbri et
al. (2008). In particular, we suggest the use of ordered propaga-
tion (Cuisenaire and Macq, 1999) or the two-step decomposi-
tion proposed by Saito and Toriwaki (1994) depending on the
number of points above threshold. If the number of points is
small relative to the number of pixels in the image, ordered
propagation will be more efficient whereas if the two are com-
parable, Saito's method should be preferred. The survey paper
of Fabbri et al. (2008) was accompanied by source code
which is freely available on the internet — readers wishing to
implement the verification of this paper are strongly encour-
aged to use these suggested resources rather than employ
brute force to calculate distances.

4.5. Summary

In this paper we suggested that by using true metrics for
spatial verification, it is possible to use a simple scalar num-
ber to capture the goodness of a forecast even if there is no
pixel-to-pixel correspondence. Further, we devised a verifi-
cation metric (Eq. 9) and showed that it was suitable for ver-
ifying model forecasts.
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Appendix A. Proof that metrV is a metric

Definition. For a given setΩ and its elements A1,A2,A3,...inΩ:
a function m(x,y) is called a metric function if it satisfies:

1. Symmetric property: m(Ai,Aj)=m(Aj,Ai);
2. Triangle inequality: m(Ai,Aj)+m(Aj,Ak)≥m(Ai,Ak);
3. Positivity:m(Ai,Aj)≥0; Andm(Ai,Aj)=0 if andonly if Ai=Aj.

We wish to prove that the metrV (Eq. 9) is a true metric
and satisfies all three of the above conditions.

It is easy to see that distDV(⋅, ⋅) satisfies symmetric proper-
ties. We show that distDV(⋅, ⋅) also satisfies the triangle in-
equality. In fact, for given A,B,C (without loss of generality,
we may assume that these sets are all distinct).We have that

distDV A;Bð Þ þ distDV B;Cð Þ
¼ distob O;Að Þ−distob O;Bð Þj jþjdistob O;Bð Þ−distob O;Cð Þj
≥ distob O;Að Þ−distob O;Cð Þj j
¼ distDV A;Cð Þ:

However, distDV does not satisfy the positivity property,
since from distDV(A,B)=0 we can only conclude that distob
(O,A)=distob(O,B), which may not yield A=B. So, we wish
to caution that it is the sum of distDV and distOV that is a met-
ric. One should not pull out any of these terms by themselves
and use them to evaluate forecasts.

Since we have shown that distDV satisfies symmetric and
triangle inequality properties, we need to show that distOV
satisfies symmetric and triangle inequality properties, and
to show that metrV satisfies the positivity property.

Let A,B,C be three sets and aij, bij, cij be corresponding
characteristic functions. We first observe that

aij−bij
� �2 þ bij−cij

� �2− aij−cij
� �2

¼ 2b2ij−2aijbij−2bijcij þ 2aijcij

¼ 2bij bij−aij
� �

þ 2cij aij−bij
� �

¼ 2 aij−bij
� �

cij−bij
� �

≥ 0:

The last inequality follows from the fact that aij, bij,cij are
either 1 or 0. Thus

distOV A;Bð Þ þ distOV B;Cð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
m

i
∑
n

j¼1
aij−bij

� �2
s

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
m

i
∑
n

j¼1
bij−cij

� �2
s

≥
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
m

i
∑
n

j¼1
aij−bij

� �2 þ∑
m

i
∑
n

j¼1
bij−cij

� �2
s

≥
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
m

i
∑
n

j¼1
aij−cij

� �2
s

¼ distOV A;Cð Þ:

This yields that the triangle inequality holds for distOV(⋅, ⋅).
It is obvious from the definition that distOV(A,B)=distOV(B,A).
using a true metric, Atmos. Res. (2011), doi:10.1016/
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To show that metrV satisfies the positivity property, we
first observe that

metrV A;Bð Þ ¼ λ1distOV A;Bð Þ þ λ2distDV A;Bð Þ ≥ 0:

Also, we observe that metrV(A,B)=0 if and only if distob
(O,A)=distob(O,B), and distOV(A,B)=0, which is equivalent
to say A=B. Thus metrV satisfies the positivity property.

There is a geometric way to view distOV. If we introduce a
characteristic function for sets A and B:

χA xð Þ ¼ 1 if x ∈ A
0 if x ∉ A;

χB xð Þ ¼ 1 if x ∈ B
0 if x ∉ B:

��
Then

distOV A;Bð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∫ χA−χB

2dx ¼�� ����χA−χB

��
L2 ;
����q

where ||· ||L2 is usually called L2 norm. From this, one can
view the metric as the square root of the area of the differ-
ence between sets A and B:

distOV A;Bð Þ ¼ jjχA−χBjjL2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
area A∪Bð Þ∖ A∩Bð Þf g

p
:
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